Check

4. In each equation, determine the value of P when $n=1$.
a) $P=2 n$
b) $P=3 n$ c) $P=4 n$
d) $P=5 n$
5. In each equation, determine the value of A when $n=2$.
a) $A=3 n+1$
b) $A=3 n+2$
c) $A=3 n+3$
d) $A=3 n+4$
6. In a table of values for a pattern, $P=3$ when $n=1$; which of the following equations might represent the pattern?
a) $P=3 n$
b) $P=n+3$
c) $P=2 n+1$
d) $P=3-n$
7. The pattern in this table continues. Which expression below represents the number of squares in terms of the figure number?

Figure, \boldsymbol{f}	Number of Squares, \boldsymbol{s}
1	6
2	7
3	8
4	9
5	10

a) $5 f$
b) $2 f$
c) $f+5$
d) $s+5$
8. This pattern of squares continues. Which equation below relates the number of squares, n, in a picture to the size number, s ?

Size 2

Size 3
a) $n=s+4$
b) $n=4 s$
c) $n=4 s+1$
d) $s=4 n$
9. The pattern in this table continues. Which equation below relates the number of squares to the figure number?

Figure, \boldsymbol{f}	Number of Squares, \boldsymbol{s}
1	5
2	7
3	9
4	11
5	13

a) $s=4 f+1$
b) $s=2 f+3$
c) $s=f+2$
d) $f=2 s+3$
10. Here is a pattern made with toothpicks. The pattern continues.

Here are the toothpicks rearranged to show what stays the same and what changes in each picture.

a) Explain how the numbers in the expression below each picture describe the arrangement of toothpicks in the picture.
b) Let n represent the number of houses in a picture. Write an expression for the number of toothpicks in n houses.
c) Write an equation that relates the number of toothpicks, t, to n.
d) Verify the equation by showing that it produces the correct number of toothpicks for the first four pictures in the pattern.

