Focus: Recognize the equations of horizontal, vertical, and oblique lines, and graph them.

Main Ideas:

Warmup:

Suppose you have a piece of licorice 10 cm long.
a) How many different ways could you cut it into two pieces?
b) In words, how are the lengths of the two pieces related?
c) If $x=$ the length of the first piece, and $y=$ the length of the second piece, write an equation for the relation.
d) How is your equation different from the equations we worked with in 4.2 ?
e) Make a table of values.
f) Graph the equation.
g) Is the relation linear?

Ex1
For the equation $3 x-2 y=6$:
a) Make a table of values for $x=-4,0,4$
b) Graph the equation.
c) What is another name for a 'slanted' line?

Piece $\# 1(x)$	Piece $\# 2(y)$

Sometimes, only one variable appears in an equation, for example,
$x=2$, or, $y=-5$
Ex2
Graph $x=2$
Hint: The only
requirement for a point on the graph is that the x value must be 2 . So y can be anything, as long as x is 2 .

What kind of line is produced?

Ex3
Graph $x=-1$

Ex4

Graph $y=-5$
The only requirement is that for each point, the y value must be -5 .

What kind of line is
produced?

What kind of equation
Produces a:
a) oblique line?
b) vertical line?
c) horizontal line?

Reflection: Give an example of an equation that produces a: (i) horizontal line (ii) oblique line (iii) vertical line

