Focus: Use interpolation and extrapolation to estimate values on a graph.

Investigate:

A city has grown over the past few years. This table and graph show how the volume of water used each month is related to the population.

Use these data to:

- Estimate the monthly water usage for a population of 150000 people.
- Estimate the population when the monthly water usage is 1400 ML .
- Predict the water usage for 250000 people.

Warmup:

Do the 'Investigate'.

What is interpolation?

When did you use interpolation in the Investigate?

What is extrapolation When did you use extrapolation in the investigate

Graph of a Car Journey

To estimate the time it takes to travel 450 km :

- Extend the grid so the Distance axis shows at least 450 km .
Use a ruler to extend the graph.
- Repeat the process to estimate the time to travel 450 km .

It takes a little more than 5.5 h ,
or about 5 h 40 min to travel 450 km .

Graph of a Car Journey

Look at the graphs
Above to better understand extrapolation.

Ex1

Corey goes biking.
Every 3 minutes (x),
Corey travels $1.5 \mathrm{~km}(y)$.
a) Draw a graph for the first 12 minutes of biking, but leave room at the end of the graph.
b) How far has Corey

biked after 7 minutes?
Is this interpolation or extrapolation?
c) How far will Corey have biked after 17
minutes. Extend your
graph to 18 minutes to
assist you. Is this interpolation or extrapolation?

Ex 2- Do the
following question by first
re-drawing and extending the graph.
Do part a (i) \& (iii)
and part $\mathrm{b}(\mathrm{i}) \&(i i i)$

This graph represents a linear relation.

a) Determine each value of x for:
i) $y=6$
ii) $y=-4$
iii) $y=-8$
b) Determine each value of y for:
i) $x=-6$
ii) $x=6$
iii) $x=9$

