1.3 - Surface Areas of Objects Made from Right Rectangular Prisms

Focus: Determine the surface areas of composite objects made from cubes and other right rectangular prisms.
Main Ideas:
Warmup:
Using the blocks
provided, complete
the 'Investigate' on
p. 25 of your text.

Number of Cubes	Surface Area (sq units)
1	
2	
3	
4	
5	
5 (a different way)	
5 (a different way)	

Do 5 blocks always give the same surface area?

Read through the
'Connect' on p. 26

What is a 'composite object'?

Ex1

Make the composite shape given below. Suppose each cube has edge length 3 cm . Determine the surface area of your shape.

Ex2
p. 31 of text, \#8b

Reflection: If you find the surface area of a composite shape by adding the surface area of each individual shape, how do you account for overlap?

1.4 - Surface Areas of Other Composite Objects

Focus: Determine the surface areas of composite objects made from right prisms and cylinders.
Main Ideas:
Warmup:
Read p. 34 up to
Example 1. Then read
p. 36 up to Example 2.
Write formulas for a
rectangular prism,
triangular prism, and a
cylinder.
Ex1
Cover p. 35 and do
example 1 on p. 34

Ex2 2 on p. 36
Cover p. 37 and do
Example

```
Ex3
p.40 #5a
```

Reflection: Why do you need to use Pythagoras' Theorem for example 3 above (p. $40 \# 5 \mathrm{a}$) but not for p. 40 \#3e?

