8.3 Exploring Integer Division

Focus on...

After this lesson, you will be able to...
\square divide integers using integer chips

Morterials

- red and blue integer chips

Literacy 8 Link

Understanding Division
In the division statement $6 \div 2=3$, the dividend is 6 , the divisor is 2 , and the quotient is 3.

This division statement means that in 6 there are 3 groups of 2 . It also means that when 6 is separated into 2 equal groups, there are 3 in each group.

Grizzly bears lose much of their body mass during their winter sleep. A large male bear may enter his den at 300 kg in November. He may lose 75 kg by the time he emerges five months later. How would you represent a loss of 75 kg with an integer? What operation would you use to find the average loss of mass in one month?

Explore the Matith

How can you use integer chips to divide two integers?

1. The diagram shows a way to model the division $(+8) \div(+2)$ using red integer chips.

a) Explain how the diagram shows the quotient $(+8) \div(+2)$.
b) Copy and complete the division statement $(+8) \div(+2)=\square$.
c) Explain how the same diagram can also model $(+8) \div(+4)$.
d) Copy and complete the division statement $(+8) \div(+4)=\square$.
2. a) Use red integer chips to model the division $(+15) \div(+5)$.
b) Copy and complete the division statement $(+15) \div(+5)=\square$.
c) Write the other division statement that the model can represent.
3. The diagram shows a way to model the division $(-8) \div(-2)$ using blue integer chips.

a) Explain how the diagram shows the quotient $(-8) \div(-2)$.
b) Copy and complete the division statement $(-8) \div(-2)=\square$.
c) Explain how the same diagram can also model $(-8) \div(+4)$.
d) Copy and complete the division statement $(-8) \div(+4)=\square$.
4. a) Use blue integer chips to model the division $(-15) \div(-5)$.
b) Copy and complete the division statement $(-15) \div(-5)=\square$.
c) Write the other division statement that the model can represent.
5. a) Model the division $(-8) \div(+2)$ using integer chips. Explain your method.
b) Copy and complete the division statement $(-8) \div(+2)=\square$.

Reflect on Your Findings

6. How can you use integer chips to divide two integers?

Example 1: Divide Using Integer Chips

Determine each quotient using integer chips. Copy and complete each division statement.
a) $(+12) \div(+3)$
b) $(-12) \div(-3)$
c) $(-12) \div(+4)$

Solution

a)

There are 4 groups, so the quotient is +4 .
The division statement is $(+12) \div(+3)=+4$.

Show You Know

Determine each quotient using integer chips. Use diagrams to show your thinking.
a) $(+14) \div(+7)$
b) $(-9) \div(-3)$
c) $(-16) \div(+2)$

Example 2: Apply Integer Division

One night, the temperature in Wetaskiwin, Alberta, was falling by $2{ }^{\circ} \mathrm{C}$ each hour. How many hours did it take for the temperature to fall $10{ }^{\circ} \mathrm{C}$ altogether? Show how you found your answer using integer chips.

Solution

Use the division of two integers to represent the situation.
Represent the $2{ }^{\circ} \mathrm{C}$ decrease each hour by the integer -2 .
Represent the total decrease of $10^{\circ} \mathrm{C}$ by the integer -10 .
The number of hours taken can be represented by the expression $(-10) \div(-2)$.
Divide $(-10) \div(-2)$ using integer chips.

There are 5 groups, so the quotient is +5 . It took 5 h for the temperature to fall $10^{\circ} \mathrm{C}$ altogether.

Show Youknow

The temperature in Buffalo Narrows, Saskatchewan, was falling by $3^{\circ} \mathrm{C}$ each hour. How many hours did it take for the temperature to fall $12^{\circ} \mathrm{C}$ altogether? Show how you found your answer using integer chips.

Rey Ideas

- You can use integer chips to model integer division.

$(-6) \div(-2)=+3$
$(-6) \div(+3)=-2$

Communicate the Ideas

1. a) Allison modelled the division $(+12) \div(+6)$ by separating 12 red chips into groups of 6 . Tyler modelled the same division by separating 12 red chips into 6 equal groups. Explain how they each determined the correct quotient.
b) Explain how each of their methods also models the division $(+12) \div(+2)$.
c) Using blue chips, could you use Tyler's method to model $(-12) \div(+6)$? Explain.
d) Using blue chips, could you use Allison's method to model $(-12) \div(+6)$? Explain.
2. a) Wing modelled the division $0 \div(+4)$ by separating 8 zero pairs into 4 groups. There were 2 zero pairs in each group. Explain how his model shows the quotient.
b) Could you model the same division with a different number of zero pairs? Explain.
c) Would you use integer chips to divide 0 by a positive or negative integer? Explain.

Cherk Pour Dhelerstinting

Practise

For help with \#3 to \#8, refer to Example 1 on pages 301-302.
3. Copy each division statement. Use the diagrams to complete it.
a) $(+10) \div(+2)=$

b) $(-16) \div(-4)=$

0000000 0000000

c) $(-14) \div(+2)=$

4. Copy each division statement. Use the diagrams to complete it.
a) $(-4) \div(-2)=$

0.0

b) $(+9) \div(+3)=\square$

c) $(-12) \div(+6)=$

5. Copy both division statements. Use the diagrams to complete them.
a) $\left.\begin{array}{rl}(+14) & \div(+2) \\ (+14) & \div(+7)\end{array}\right) \square \square$

00000 000000

b) $(-10) \div(-2)=\square$ $(-10) \div(+5)=\square$

6. Copy both division statements. Use the diagrams to complete them.
a) $\begin{aligned}(+15) \div(+5) & =\square \\ (+15) \div(+3) & =\square\end{aligned}$

b) $(-18) \div(-9)=$ $(-18) \div(+2)=\square$

7. Determine each quotient using integer chips. Have a partner check your chips. Then copy and complete the division statement
a) $(+16) \div(+4)=\square$
b) $(-7) \div(+7)=$
c) $(-12) \div(-6)=\square$
8. Divide using integer chips. Then copy and complete the division statement.
a) $(-20) \div(-10)=\square$
b) $(-10) \div(+2)=\square$
c) $(+4) \div(+2)=\square$

Apply

For help with \#9 to \#11, refer to Example 2 on page 302. Use the division of two integers to represent each situation and solve the problem.
9. A submarine was diving at $3 \mathrm{~m} / \mathrm{min}$. How long did it take to dive 21 m ?
10. From 11:00 p.m. to 5:00 a.m., the temperature in Saskatoon fell from $-1{ }^{\circ} \mathrm{C}$ to $-19{ }^{\circ} \mathrm{C}$.
a) What was the change in temperature?
b) What was the change in temperature per hour? What assumption did you make?
11. Gary takes four bus trips on each day of the weekend. He spends $\$ 16$ each weekend on bus fares. How much does each trip cost?

12. Copy the pattern.
$(-12) \div(-3)=$
$(-9) \div(-3)=$
$(-6) \div(-3)=$
$(-3) \div(-3)=$
$0 \div(-3)=\square$
$(+3) \div(-3)=$
$(+6) \div(-3)=$
a) Use integer chips to complete the first four lines. Describe the pattern.
b) Extend the pattern to determine the quotient $(+6) \div(-3)$.
13. Copy the pattern.
$(-8) \div(-2)=$
$(-6) \div(-2)=$
$(-4) \div(-2)=$
$(-2) \div(-2)=$
$0 \div(-2)=\square$
$(+2) \div(-2)=$
$(+4) \div(-2)=$
a) Use integer chips to complete the first four lines. Describe the pattern.
b) Extend the pattern to determine the quotient $(+4) \div(-2)$.
14. The deepest recorded dive is 500 m for an emperor penguin and 2000 m for a sperm whale.

a) Use the division of two integers to represent how many times as deep a sperm whale can dive as an emperor penguin.
b) How can you model the division using only 20 integer chips?
c) What is the quotient?

Extend

15. Divide each of the following using integer chips or diagrams of chips. Explain your reasoning.
a) $(+15) \div(+5) \div(+3)$
b) $(-24) \div(-2) \div(+4)$
c) $(-20) \div(+2) \div(-5)$
d) $(-18) \div(+2) \div(+3)$
16. Since sunset 6 h ago, the temperature in Brandon, Manitoba, has decreased from $+1^{\circ} \mathrm{C}$ to $-11^{\circ} \mathrm{C}$. Predict what the temperature will be 3 h from now. What assumptions did you make?
